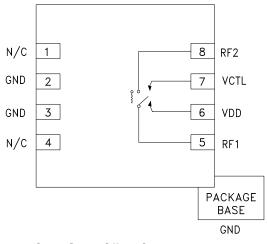


Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz



Typical Applications

The HMC1055LP2CE is ideal for:

- RFID & Electronic Toll Collection (ETC)
- Tags, Handsets & Portables
- ISM, WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Failsafe Operation - "On" When Unpowered

Wide Vdd Range: 1.2V to 5V

Very Low On State Current: 200 nA

Low Insertion Loss: 0.7 dB

High IP3: +52 dBm

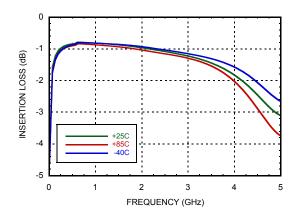
Compact SOT26 SMT Package

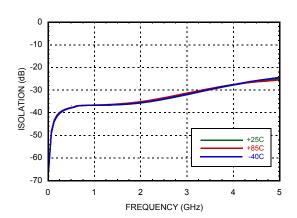
General Description

The HMC1055LP2CE is low-cost SPST Failsafe switch in 2x2mm,8 lead DFN plastic package for use in switching application which require low insertion loss and very low current consumption. With 0.7 dB typical loss, these devices can control signals from DC to 4 GHz and are especially suited for IF and RF applications including RFID, ISM, automotive and battery powered tags and portables. RF1 and is reflective open while RF2 is terminated in 50 OHMs when "Off". The switch requires a minimal amount of DC current in the "On" state, and offers compatibility with CMOS and some TTL logic families. The failsafe topology results in the switch being normally "On", i.e. low insertion loss from RF1 to RF2, when no DC bias is applied.

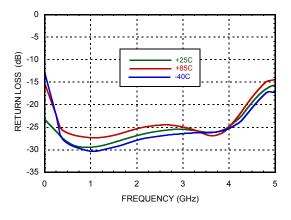
Electrical Specifications

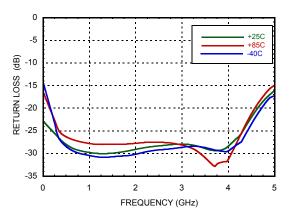
 $T_{\rm A}$ = +25° C, Vdd = +3.3 Vdc, Vctl = 0/+3.3 Vdc (Unless Otherwise Stated), 50 Ohm System

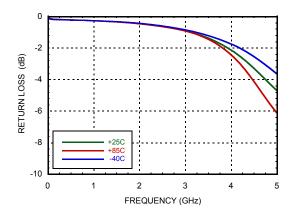

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 3.0 GHz DC- 4.0 GHz		0.6 1.8		dB
Isolation		DC - 2.0 GHz DC - 4.0 GHz		36 28		dB dB
Return Loss		DC - 4.0 GHz		25		dB
Input Power for 0.1 dB Compression	Vctl = 0/+3.3V	0.5 - 4.0 GHz		28		dBm
Input Third Order Intercept (Two-tone Input Power = +15 dBm Each Tone)	Vctl = 0/+3.3V	0.5 - 4.0 GHz		63		dBm
Switching Characteristics		DC - 4.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)				40 50		ns ns

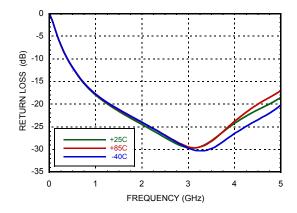


GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz


Insertion Loss VctI=3V VDD=3V

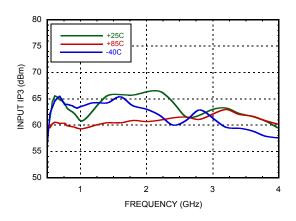

Isolation VctI=3V VDD=3V

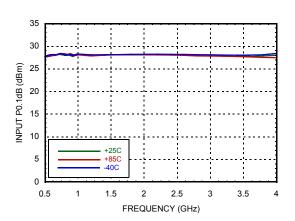

Return Loss VctI=3V RF1


Return Loss VctI=3V RF2

Return Loss VctI=0V RF1

Return Loss VctI=0V RF2




GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz

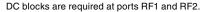
Input IP3 vs. Temperature

Input P0.1dB vs. Temperature

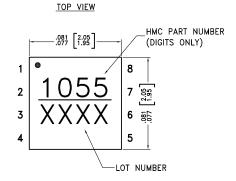
Operating Conditions

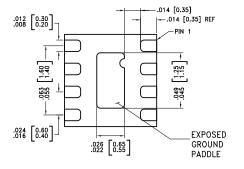
Vdd & VctI = 0 Vdc to +3 Vdc; VctI_max = Vdd + 0.2 Vdc; Idd & IctI = 0.1 μ A, Typical

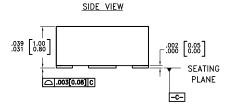
Conditions	Vdd - Vctl ≥ + 1.2 Vdc	-0.2 Vdc < Vdd - Vctl < +0.4 Vdc
RF1 - RF2	OFF	ON



GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz


Absolute Maximum Ratings


RF Input Power (Vctl = 0/+3.3V)	+34 dBm	
Supply Voltage (Vdd)	+6.0 Vdc	
Control Voltage Range (Vctl)	-0.2 to +(Vdd + 0.2) Vdc	
Channel Temperature	150 °C	
Continuous Pdiss (T= 85 °C) (derate 6.67 mW/ °C above 85°C)	0.88 W	
Thermal Resistance	74 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	



Outline Drawing

BOTTOM VIEW

NOTES:

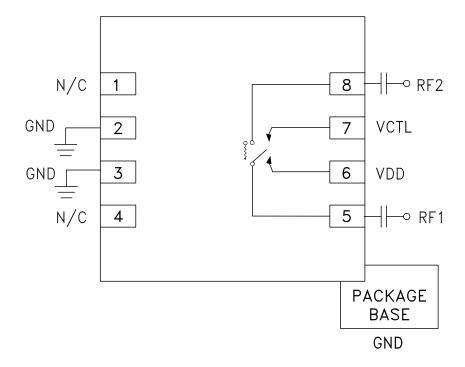
- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
- 3. LEAD AND GROUND PADDLE MATERIAE. COFFER ALEOT
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- $6.\,\mathrm{CHARACTERS}$ TO BE HELVETICA MEDIUM, .016 HIGH, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 7. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTE

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC1055	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	1055

[[1] Max peak reflow temperature of 260 °C



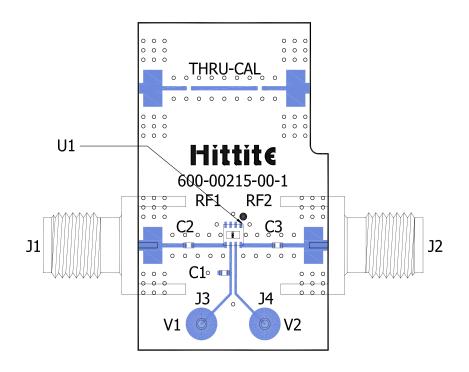
GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4	N/C		
2, 3	GND	These pins and the exposed ground paddle must be connected to RF ground.	⊖ GND =
5,8	RF1,RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
6	Vdd	Supply Voltage	
7	Vetl	See truth and control voltage tables.	

Typical Application Circuit

Note:


1. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

GaAs MMIC SPST FAILSAFE SWITCH, DC - 4 GHz

Evaluation PCB

List of Materials for Evaluation EVAL01-HMC1055LP2C

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	1,000 pF Capacitor, 0402 Pkg.	
C2 - C3	330 pF capacitor, 0402 Pkg.	
U1	HMC1055LP2CE SPST Switch	
PCB [2]	600-00215-00 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.